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Abstract. The s-parameterized characteristic function for the output field with the superposition of
squeezed displaced Fock states (SDFS’s) as input field is given. The s-ordered distribution functions for
the output field with superposition of SDFS’s as input state are investigated. Various moments are cal-
culated by using the s-ordered characteristic function for that field. The Glauber second-order coherence
function is calculated. The quadrature squeezing for the output field are discussed. Some Quasiprobability
distribution functions of the output fields are plotted as functions of the interaction time. The quadrature
squeezing for the output field are discussed.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions – 03.65.Bz Foundations, theory of measurement, miscellaneous theories
(including Aharonov Bohm effect, Bell inequalities, Berry’s phase)

1 Introduction

There has been vigorous investigations for the linear inter-
action of atoms with an optical field in the last couple of
decades [1,2]. A simple model for linear phase-insensitive
amplification or absorption can be obtained by consider-
ing the medium to be a collection of two-level atoms with
populations N2 and N1 in the excited and ground states
respectively [1c]. When a signal passes through an am-
plifier, it is modified in two ways: First the amplitude of
the signal is amplified. Second noise is added to the sig-
nal. The noise can be either phase dependent or phase
independent. Here the quantum statistical properties of
the output is considered to be depending on the quantum
statistical properties of the input field.

The quasiprobability distribution function is a c-
number functions, not necessarily positive, that allows one
to calculate the expectation values of a quantum system
[3,4]. Recently the quasiprobability functions have be-
come accessible to experimental measurement by means
of the optical homodyne technique. These measurement
schemes have revealed a new facet of the s-paramaterized
quasiprobability functions in coherent state basis, namely
that the s-parameterized quasiprobability distribution
function with fractional values of s (|s| < 1) is what is
actually seen by the detectors. The value of the parame-
ter s as revealed by these experiments is directly related
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to the detector efficiency and the amplification of the laser
amplifier used in these schemes [5].

The squeezed displaced Fock states (SDFS’s) have
been introduced and studied in [6]. These states gener-
alize two-photon coherent states [7] (squeezed coherent
states), squeezed number states [8], and displaced Fock
states [6,8]. They exhibit both number squeezing in the
strong sense and the quadrature squeezing. Recently the
creation of nonclassical states of motion of a trapped ion
such as Fock states, coherent states, squeezed states and
Schrödinger cat states have been reported [9]. That moved
the study of these states from the academic realm to the
world of experimentation. This motivated us to study the
linear amplifier superposition of these states.

Superposition of quantum-mechanical states of elec-
tromagnetic field have recently received much attention
in quantum optics [10–14], since these states can ex-
hibit non-classical properties of light, such as quadra-
ture squeezing and sub-Poissonian photon statistics. In
particular, the Schrödinger cat states, are superpositions
of distinguishable macroscopic quantum states of a sin-
gle mode of the quantized electromagnetic field and are
usually given as superpositions of two ordinary coherent
states |α〉 and |− α〉, which are separated in phase by
180◦ [10]. The linear superpositions of a finite number of
SDFS’s has been studied [15]. The purpose of this arti-
cle is to study the quantum statistical properties of the
output field with superposition of SDFS’s as input state.
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This paper is organized as follows. In Section 2, we
discuss the s-parameterized characteristic function on a
linear amplifier with superposition of a pair of SDFS’s as
input state. We study some applications for the s-ordered
characteristic function: namely, moments and squeez-
ing. In Section 3, we discuss the s-parameterized quasi-
probability distribution function. We conclude the paper
in Section 4 with some brief remarks.

2 s-parameterized characteristic function
on a linear amplifier with SDFS’s
superposition state as input field

We briefly discuss an optical linear amplifier and its dy-
namics. We assume that there exist NT two-level atoms
concentrated in a very small region of the space com-
pared with the radiation wavelength, and that a single-
mode of the electric field interacts with their dipole mo-
ments through the atomic transitions. The field frequency
is resonant with the atomic transition frequency and the
position-dependent variable of the field is eliminated. Sup-
pose that N1 of the atoms are in the lower state and N2

in the upper state (NT = N1 +N2). The system behaves
as an amplifier if N1 < N2, and as a field attenuator when
N1 > N2. The density operator ρ of the field obeys the
following equation, [1]

∂ρ

∂t
= ηN2(2a+ρa− aa+ρ− ρaa+)

+ ηN1(2aρa+ − a+aρ− ρa+a), (2.1)

where a and a+ are the usual single-mode photon annihi-
lation and creation operators and η denotes the coupling
constant between the atoms and the field.

According to Cahill and Glauber [3] the P (Glauber-
Sudarshan), W (Wigner) and Q (Husimi) functions may
be expressed in an integral form

F (α, s) =
1

π2

∫
C(β, s) exp(β∗α− βα∗)d2β (2.2)

where C(β, s) is the s-ordered generalized characteristic
function

C(β, s) = Tr[D(β)ρ] exp(
s

2
|β|2) (2.3)

and s is a parameter which defines the relevant quasiprob-
ability distribution functions. For s = 1 we obtain the
Glauber-Sudarshan P -function, for s = 0 we have the
Wigner function, and for s = −1, we have the Q-function.
In equation (2.3), D(β) is the Glauber displacement op-
erator [7] (see (2.11) below), and ρ is the density matrix
of the field under investigation.

From equation (2.1) Carustto [1c] was able to find the
normally ordered characteristic function, CN (ζ, t), which
is defined as

CN (ζ, t) = Tr[ρ(t) exp(ζa+) exp(−ζ∗a)]. (2.4)

It is found that

CN (ζ, t) = C1(ζ, t)C2(ζ, t) (2.5)

where

C1(ζ, t) = Tr[ρ(0) exp(G∗ζa+) exp(−Gζ∗a)] (2.6)

and

C2(ζ, t) = exp[−
N2

N2 −N1
(|G|2 − 1)|ζ|2] (2.7)

with

G(t) = exp[η(N2 −N1)t− iωt] (2.8)

where ρ(0) is the initial density operator, and ω the fre-
quency of the field. So that the system is an amplifier if
N2 > N1. The quantity |G|2 is the gain of the amplifier,
in fact |G|2 will be the gain (N2 > N1) or loss (N1 > N2)
factor.

For an input field on the linear amplifier, we choose a
superposition state |Ψm〉 which is assumed in the form

|Ψm〉 = A−
1
2 {|α0, z,m〉+K| − α0, z,m〉} (2.9)

where |α0, z,m〉 is SDFS given by

|α0, z,m〉 = D(α0)S(z)|m〉 (2.10)

where the displacement operator D(α0), (with α0 =
|α0| exp(iθ0) a complex parameter that represents the
magnitude and angle of the displacement), and squeeze
operator S(z) are given by [7]

D(α0)=exp(α0a
+ − α0

∗a), S(z)=exp
[z∗

2
a2−

z

2
a+2

]
,

(2.11)

where z = reiφ and r is known as the squeeze parameter
and φ indicates the direction of squeezing. With A is the
normalization constant given by

A = {1 + |K|2 + (K +K∗)e−2|ᾱ0|
2

Lm(4|ᾱ0|
2)} (2.12)

where ᾱ0 = µα0 + να0
∗ , µ = cosh r, ν = exp(iφ) sinh r

and Lσm(x) is the Laguerre polynomial

Lσm(x) =
m∑
s=0

(
m+ σ

m− s

)
(−1)s

s!
xs. (2.13)

For K = 0 we have the SDFS’s, but for K = 1 or −1 the
resulting states depend on m: if m is an even number and
K = 1, we have superposition of even states and while
odd states are obtained when K = −1. But when m is an
odd number the result, is reversed.

The density operator for an input state of the single-
mode field given by the superposition of a pair of SDFS’s,
takes the form

ρ(0) = |Ψm >< Ψm|. (2.14)
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By using the operators identities, we can write the s-
ordered characteristic function in the form,

C(ζ, s, t) =
1

A
exp

[{s− 1

2
+

1

2
|G|2 −M(t)

}
|ζ|2
]

×
{[

exp
{
−

1

2
|ζ̄|2
}
Lm[|ζ̄|2]

][
exp

[
G∗α∗0ζ −Gα0ζ

∗]

+ |K|2 exp
[
−G∗α∗0ζ+Gα0ζ

∗
]]

+Kexp
{
−

1

2
|ζ̄−2ᾱ0|

2
}

×Lm[|ζ̄−2ᾱ0|
2]+K∗exp

{
−

1

2
|ζ̄+2ᾱ0|

2
}
Lm[|ζ̄+2ᾱ0|

2]
}

(2.15)

where

ζ̄ = µG∗ζ + νGζ∗ (2.16)

and

M(t) =
N2

N2 −N1
(|G|2 − 1). (2.17)

Thus the s-parameterized CF is obtained; and from it we
can calculate any expectation value for the field operators.

2.1 Moments

We calculate the moments of the photon operators for the
output of linear amplifier with superposition of SDFS’s
as an initial state. We also present the average values of
the quadrature operators. The s-ordered average value of
a and a+ can be calculated in the following way

〈[a+kal]s〉 = Tr[ρ{a+kal}s] (2.18)

=
∂k

∂ζk
∂l

∂(−ζ∗)l
C(ζ, s, t)|ζ=ζ∗=0 (2.19)

or through an integration involving the function F (β, s).
The average values of the annihilation and creation

operators are derived by differentiating the characteris-
tic function equation (2.15) with respect to ζ and −ζ∗,
respectively:

〈a+〉 =
G∗

A

{
(K −K∗)

[
2(µᾱ∗0 + ν∗ᾱ0) exp[−2|ᾱ0|

2]

× L1
m−1(4|ᾱ0|

2) + α∗0 exp[−2|ᾱ0|
2]Lm(4|ᾱ0|

2)
]

+ α∗0(1− |K|2)
}

= (〈a〉)∗. (2.20)

Similarly,

〈a+a+〉 =
G∗2

A

{
(K +K∗)

[
4(µᾱ∗0 + ν∗ᾱ0)2 exp[−2|ᾱ0|

2]

× L2
m−2(4|ᾱ0|

2)+{4(µᾱ∗0+ν∗ᾱ0)2−2µν∗} exp[−2|ᾱ0|
2]

× L1
m−1(4|ᾱ0|

2) + {(µᾱ∗0 + ν∗ᾱ0)2 − µν∗} exp[−2|ᾱ0|
2]

× Lm(4|ᾱ0|
2)
]
+(1−|K|2)[α∗0

2−2µν∗m−µν∗]
}

=(〈aa〉)∗.

(2.21)

The average number of photons can be acquired analo-
gously:

〈[a+a]s〉 =
|G|2

A

{
(K +K∗)

[
− 4|µᾱ0 + νᾱ∗0|

2

×exp[−2|ᾱ0|
2]L2

m−2(4|ᾱ0|
2)+{(|µ|2+|ν|2)−4|µᾱ0+νᾱ∗0|

2}

× exp[−2|ᾱ0|
2]L1

m−1(4|ᾱ0|
2) + {|µᾱ0 + νᾱ∗0|

2 +A1}

× exp[−2|ᾱ0|
2]Lm(4|ᾱ0|

2)
]

+ (1− |K|2)[|α0|
2

+m(|µ|2 + |ν|2)−A1]
}
, (2.22)

where

A1 =
−1

|G|2
{

1− s

2
+ |G|2|ν|2 +M(t)}, (2.23)

and 〈a+a+aa〉 can be analogously calculated.
The Glauber second-order coherence function is de-

fined by

g(2) =
〈a+2

a2〉

〈a+a〉2
· (2.24)

It has been classified that the light with g(2) < 1 is a sub-
Poissonian light, the light with 1 < g(2) < 2 is a super-
Poissonian light, and the light with g(2) > 2 is called super
thermal light. It is well known that the coherency is unity
for the coherent light (Poissonian light).

Substitution of 〈a+a+aa〉 and (2.22) into (2.24) yields
the coherence function for the superposition of SDFS’s.

We plot autocorrelation function of equation (2.24) in
Figure 1. In the figure the vertical axis measures the mag-
nitude of coherency, while the horizontal axis indicates the
interaction time t. We assume the parameters as follows:
the number of photons m = 0, 1, 2, 3 the displacement
parameter α0 = 1, the squeeze parameter r = 0.5 and
the direction of squeezing is zero. The constant K has the
values (a) K = 1, (b) K = i, (c) K = −1. From Fig-
ure 1a, (K = 1), we note the sub-Poissonian light exists
for odd number of photons (m = 1, 3) in the SDFS’s. The
series in this case contains odd states only. The super-
Poissonian statistics exist with m = 0, 1, 2, 3 as t devel-
ops. Even for the case of light initially starting with sub-
Poissonian distribution (m = 0) turns to super-Poissonian
as t develops in Figure 1. From Figure 1c, (K = −1),
we note the sub-Poissonian light exists for even m = 0, 2
in SDFS’s for small t. Numerical calculations show that
as the squeeze parameter r is changed to 1 the super-
Poissonian behaviour is persistent.

2.2 Squeezing

We study the squeezing properties of the superposition of
SDFS’s. It is will known the quadrature operators of the
single mode field are given by

X1 =
1

2
(a+ a+), X2 =

1

2i
(a− a+) (2.25)
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Fig. 1. Coherence function g(2) measured on vertical axis and
horizontal axis indicates the interaction time t, with α0 = 1 and
the squeeze parameter is assumed real and for r = 0.5. The am-
plifier parameters are η = 0.2, ω = 1 and |G| = exp(0.2t). The
number of photons of initial state (superposition of SDFS’s)
have the values; m = 0 (solid curve), m = 1 (dotted curve)
m = 2 (chained curve) and m = 3 (dashed curve). The con-
stant K is assumed as: (a) K = 1, (b) K = i (c) K = −1.

such that [X1,X2] = i
2 which satisfies the uncertainty

relation 〈(∆X1)2〉〈(∆X2)2〉 ≥ 1
16 with the variance

〈(∆Xj)
2〉 = 〈X2

j 〉−〈Xj〉2. The field is said to be squeezed

if (∆Xj)
2 < 1

4 for (j = 1 or 2).

The average values of the quadrature field operators
〈X1〉 and 〈X2〉 are directly computed. Also variances of
the quadrature field operators 〈(∆X1)2〉 and 〈(∆X2)2〉 are
computed.

Fig. 2. Squeezing parameter q1 against the interaction time
t, with α0 = 0.2. The remainder parameters assume the same
values in Figure 1.

The squeezing is best parameterized by

qi =
〈(∆Xi)

2〉 − 0.25

0.25
, i = 1, 2 (2.26)

such that squeezing exits for −1 < qi < 0. Squeezing in
one quadrature is achieved at the expense of increased
noise in the conjugate quadrature; therefore, if one of qi’s
is less than zero, then the other should be greater than
zero.

In Figure 2 we plot q1 against the interaction time t
the squeeze with the parameter r = 0.5 for φ = 0 and
α0 = 0.2. The number of excitations in this superposition
state are assumed m = 0, 1, 2, 3. The constant K has the
values (a) K = 1, (b) K = i, (c) K = −1. It is apparent
that the degree of squeezing decreases with increasing t.
We find that the maximum squeezing in the case of m = 0
in Figure 2a,b. For t = 0 the increase of m implies the
decrease of the squeezing degree.
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F (β, s, t) =
1

π|G|2A
√
K1

m∑
j=0

j∑
l=0

(
j

l

)(
m

j

)
(−1)j

(j − l)!

(
ν1

K1

)l(
−
|ν2|

K1

)j−l

×

{
exp

[
1

K1
(−ν1|ν3|

2 + ν2ν
∗
3

2
+ ν∗2ν

2
3)

]
Hj−l

[
(−ν1ν

∗
3 + 2ν∗2ν3)

2
√

(−K1ν∗2 )

]
Hj−l

[
(ν1ν3 − 2ν2ν

∗
3 )

2
√

(−K1ν2)

]

+ |K|2 exp

[
1

K1
(−ν1|ν4|

2 + ν2ν
∗
4

2
+ ν∗2ν

2
4)

]
Hj−l

[
(−ν1ν

∗
4 + 2ν∗2ν4)

2
√

(−K1ν∗2 )

]
Hj−l

[
(ν1ν4 − 2ν2ν

∗
4 )

2
√

(−K1ν2)

]

+K exp

[
4∆{(|µ|2 + |ν|2)|ᾱ0|

2 − µνᾱ∗20 − µν
∗ᾱ2

0}+ 2α∗0
β

G
− 2α0

β∗

G∗

]

× exp

[
1

K1
(ν1ν5ν6 + ν2ν6

2 + ν∗2ν
2
5)

]
Hj−l

[
(ν1ν6 + 2ν∗2ν5)

2
√

(−K1ν∗2 )

]
Hj−l

[
(ν1ν5 + 2ν2ν6)

2
√

(−K1ν2)

]

+K∗ exp

[
4∆{(|µ|2 + |ν|2)|ᾱ0|

2 − µνᾱ∗20 − µν
∗ᾱ2

0} − 2α∗0
β

G
+ 2α0

β∗

G∗

]

× exp

[
1

K1
(ν1ν7ν8 + ν2ν8

2 + ν∗2ν
2
7)

]
Hj−l

[
(ν1ν8 + 2ν∗2ν7)

2
√

(−K1ν∗2 )

]
Hj−l

[
(ν1ν7 + 2ν2ν8)

2
√

(−K1ν2)

]}
(3.1a)

Numerical calculations show that as the α0 decreases
the squeezing degree of qi increases. Also the maximum
degree of the second-order squeezing of q2 exist in the
interval 1.2 < t < 2. We can conclude that the output
of linear amplifier with superposition of pair of SDFS’s
as initial state exhibits different nonclassical effects which
depend on the particular choice of the phases θ0 and φ.

3 s-parameterized quasi-probability function

Quasi-probability distribution functions, [3,4] such as
Glauber’s P function, the Wigner W function and the
Q function proved to be very useful theoretical tools in
performing quantum optical calculations. These functions
provide a way to characterize the non-classical nature of a
quantum field. They have now actually become accessible
to measurements [5].

The s-ordered distribution functions are defined as a
Fourier transformation of the s-ordered CF, and can be
obtained by using (2.15) in (2.2). By performing the inte-
gration [1b], then the s-ordered distribution function for
the output linear amplifier field may be written in the
form:

See equation (3 .1a) above

where

ν1 =
{1− s+ 2M(t)}(|µ|2 + |ν|2)

2|G|2
− |ν|2, (3.1b)

ν2 = {1− s− |G|2 + 2M(t)}
µν∗

2|G|2
, (3.1c)

ν3 = µ

(
β∗

G∗
− α0

∗

)
+ ν∗

(
β

G
− α0

)
, (3.1d)

ν4 = µ

(
β∗

G∗
+ α0

∗

)
+ ν∗

(
β

G
+ α0

)
, (3.1e)

ν5 =

[
2∆(|µ|2 + |ν|2)ᾱ∗0 − 4∆µν∗ᾱ0−

(
µ
β∗

G∗
+ ν∗

β

G

)]
,

(3.1f)

ν6 =

[
2∆(|µ|2 + |ν|2)ᾱ0 − 4∆µνᾱ∗0+

(
µ
β

G
+ ν

β∗

G∗

)]
,

(3.1g)

ν7 =

[
− 2∆(|µ|2+|ν|2)ᾱ∗0+4∆µν∗ᾱ0−

(
µ
β∗

G∗
+ν∗

β

G

)]
,

(3.1h)

ν8 =

[
− 2∆(|µ|2 + |ν|2)ᾱ0 + 4∆µνᾱ∗0 +

(
µ
β

G
+ ν

β∗

G∗

)]
,

(3.1i)

∆ =
s− 1

2
+

1

2
|G|2 −M(t) (3.1j)

and K1 = ν2
1 − 4|ν2|

2 (3.1k)

From this formula the exact analytical expressions for the
s-parameterized quasiprobability distribution function for
the output linear amplifier with the superposition of the
coherent states [3], squeezed states [7] and displaced Fock
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Fig. 3. Three-dimensional time dependence of a Wigner dis-
tribution function for the output of the linear amplifier driven
by the SDFS’s superposition with m = 0, α0 = 2, and squeeze
parameter r = 1, and its direction φ = 0. The amplifier pa-
rameters assume the same values in Figure 1. Here X = Re(β)
and Y = Im(β). The interaction time t = nπ

4
, n = 0, 1, 2, is

chosen for illustration.

states [8] can be found as special cases. We note that The
P function, i.e., s = 1 exists for the output linear amplifier
with the SDFS’s superposition states, when t > π

2 .

In Figure 3 we plot the Wigner function, i.e., s = 0
with the parameters having the values: m = 0, i.e., for
the squeezed state superposition, α0 = 2, r = 1, φ = 0
and K = 1. The amplifier parameter is |G| = exp(0.2t).
The interaction time t = nπ

2 , n = 0, 1, 2, is chosen for
illustration. It is clear that (at t = 0) from the form of the
Wigner function the three peaks observed may be easily
found at x = ±α0, 0 and y = 0. The nonclassical nature
of the superposition of two SDFS’s is indicated by the
negative values of the Wigner distribution function. As

Fig. 4. The Q-function (i.e., s = −1) for the output of the
linear amplifier driven by the SDFS’s superposition state with
the same parameters in Figure 3.

time increases we observe that the function rotates in the
phase space and it spread out with flattening of middle
peak.

In Figure 4 we have the Q function for the output
linear amplifier with the squeezed state superposition (i.e.,
m = 0) as an input state with the same parameters as in
Figure 3. We note that for α0 < 1 the Q function for t = 0
is a Gaussian centred at the origin. As α0 increases we see
that the Gaussian splits into two peaks moving along the
positive and negative x-axis, with greater separation for
increasing of α0. It is easily found that the two peaks at
x = ±α0 and y = 0. Similar behaviour is infered from
Figures 3, 4 as t develops.

The Wigner functions of the output linear amplifier
with the pair of SDFS’s superposition state as input for
m = 1, α0 = 2 and z = 1 are shown in Figure 5. The
amplifier parameters have the same values as in Figure 3.
From the plots, two separated negative peaks and an os-
cillatory regime between them can be seen at t = 0.
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Fig. 5. Temporal behaviour of a Wigner distribution function for the output of the linear amplifier driven by the SDFS’s
superposition with m = 1, α0 = 2, r = 1, and φ = 0. The amplifier parameters assume the same values in Figure 1. Here
X = Re(β) and Y = Im(β). The interaction time t = nπ

4
, n = 0, 1, 2, 4, is chosen for illustration.

Fig. 6. Temporal behaviour of the Q-function for the output of the linear amplifier driven by the SDFS’s superposition state
with the same parameters in Figure 5.
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Fig. 7. The W (Wigner) function (i.e., s = 0) for the output of the linear amplifier driven by a SDFS’s superposition state with
m = 2, α0 = 3, r = 1, and φ = 0. The amplifier parameters are the same as in Figure 1. The interaction times t = nπ

4
, n = 0,

1, 2, 4 are chosen to illustrate the dependence on time and the rotation in the phase space. Here X = Re(β) and Y = Im(β).

Fig. 8. Temporal behaviour of the Q-function for the output of the linear amplifier driven by the SDFS’s superposition state
with the same parameters in Figure 7.
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The separation of the two peaks is seen to increase with
α0, but the oscillatory regime increase the with increase of
r. The constant K = 1, and the interaction time t = nπ

2 ,
n = 0, 1, 2, 4, are chosen for illustration.

In Figure 6 we show the plots of the Q function with
the same parameters as in Figure 5. Note that as time
increases one f side of the figure diminishes in a faster
way than the other giving an asymmetry and the effect of
superposition s almost lost.

In Figure 7 we plot the Wigner function of the out-
put linear amplifier with the pair of SDFS’s superposition
state as input with m = 2, α0 = 3, z = 1, K = 1 and t
as in Figure 5. The amplifier parameters have the same
values as in Figure 3. We note that the oscillatory regime
between the two peaks increased with the increase of m at
t = 0. The Q function is shown in Figure 8 with the same
parameters as those of Figure 7. We note that for chosen
α0 the squeezing effect decreases with increasing m. From
these figures it is seen that asymmetry starts to develops
as t increases.

Generally it is seen that, for t = 0 behaviour of Wigner
and Q functions exhibits the standard distributions of
the pair of SDFS’s superposition state as shown in ref-
erence [15]. With increasing of time the maximum val-
ues of Wigner and Q functions decrease and rotate in a
clockwise direction. This means a loss of squeezing as time
develops. The rotation in the phase space is due to the ap-
pearance of the frequency in the factor G. The spreading
and shrinking of Wigner and Q functions over the β-plane
is shown as time advances. The flattening of the two peaks
are shown as time advances, which means an increase of
diffusion as interaction time t progresses. As t becomes
greater than 2π the the various quasiprobability functions
(i.e., P , Wigner and Q functions) behave in nearly the
same way, and they almost have the same shape.

4 Conclusion

We have discussed the s-ordered characteristic function
and quasiprobability distribution function for the out-
put linear amplifier with the pair of SDFS’s superposi-
tion state as input. We have obtained the formulae for
the s-ordered characteristic function for the output lin-
ear amplifier with the pair of SDFS’s superposition as
an initial field. Several moments have been calculated by
using the characteristic function as a function of the in-
teraction time. The second-order correlation function g(2)

has been investigated numerically. The squeezing proper-
ties for these states have been discussed. The Wigner and
Q functions for some parameters have presented analyt-
ically and numerically. We have demonstrated the rota-
tion of the quasiprobability distribution function in the
phase space as a function of interaction time. It has also
been exhibited the asymmetrical diffusion for superposi-
tion states. Our results generalize these in [1,2] for the
linear amplifier. The physical interpretation of the output
of linear amplifier with superposition of SDFS’s as input
tends to that for SDFS’s input as we have shown [1b] while
time greater than π.

Our present work was motivated by the desire to re-
alize physically certain specific quantum states (superpo-
sition of SDFS’s [15]) and use it as input for the linear-
insensitive amplifier as one of its applications. It is hoped
that the superposition of SDFS’s will find application in
the quantum nondemolition measurements and quantum
optics. They may also find applications in experimental
situations that require low noise sensitivity.

The author would like to thank Prof. A.-S. F. Obada for helpful
discussions and his continuous help.
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